Prediction Interval of Interface Regions: Machine Learning Nowcasting Approach

Author:

Alielden Khaled1ORCID,Camporeale Enrico23ORCID,Korsós Marianna B.145,Taroyan Youra1

Affiliation:

1. Department of Physics Aberystwyth University Ceredigion UK

2. CIRES University of Colorado, Boulder Boulder CO USA

3. NOAA Space Weather Prediction Center Boulder CO USA

4. Dipartimento di Fisica e Astronomia “Ettore Majorana” Università di Catania I 95123 Catania Italy

5. Department of Astronomy Eötvös Loránd University Budapest Hungary

Abstract

AbstractStream interaction region (SIR) is one of the space weather phenomena that accelerates the upstream particles of the interface region in interplanetary space and causes geomagnetic storms. SIRs are large‐scale structures that vary temporally and spatially, both in latitudinal and radial directions. Predicting the arrival times of interface regions (IRs) is crucial to protect our navigation and communication systems. In this work, a 1D ensemble system comprised of a Long‐short‐term memory (LSTM) model and a Convolution Neural Network (CNN) model—LCNN is introduced to classify the observed IR time series and give the prediction interval nowcast of its transit time to the observer. The outcomes of the two models are combined in a way to boost the accuracy of the predictor and prevent error propagation between them. The implemented technique is time series classification on datasets from STEREO A and B spacecrafts. The LCNN prediction system of IRs provides advanced Notice Time (NT) interval between [20, 160] minutes with sensitivity around 93% and geometric mean score gmean of 91.7%, and the skills decrease with increasing the prediction time. The LCNN demonstrates an enhancement in the prediction with respect to using only either the CNN or LSTM models. The predicted probabilities are recalibrated so that the predicted frequency of IRs becomes on average consistent with the observed frequency. Application of the method is useful to provide a classification of IRs by inputting a time series and estimating the likelihood of occurrence of an IR and its arrival time on the observer.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3