Predicting Geostationary 40–150 keV Electron Flux Using ARMAX (an Autoregressive Moving Average Transfer Function), RNN (a Recurrent Neural Network), and Logistic Regression: A Comparison of Models

Author:

Simms L. E.12ORCID,Ganushkina N. Yu.13ORCID,Van der Kamp M.3ORCID,Balikhin M.4ORCID,Liemohn M. W.1ORCID

Affiliation:

1. University of Michigan Ann Arbor MI USA

2. Department of Physics Augsburg University Minneapolis MN USA

3. Finnish Meteorological Institute Helsinki Finland

4. University of Sheffield Sheffield UK

Abstract

AbstractWe screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions.

Funder

NASA Headquarters

Academy of Finland

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3