Asymmetric Ionospheric Fluctuations Over the Circum‐Pacific Regions Following the January 2022 Tonga Volcanic Eruption

Author:

Li Wang1ORCID,Zhu Haoze1,Feng Jiandi2ORCID,Wu Xuequn1ORCID,Tang Jun1ORCID,Zhang Zhen1,Chen Junyu1

Affiliation:

1. Faculty of Land Resources Engineering Kunming University of Science and Technology Kunming China

2. School of Civil Engineering and Geomatics Shandong University of Technology Zibo China

Abstract

AbstractThe Hunga Tonga‐Hunga Ha'apai volcanic eruption on 15 January 2022 had a significant impact on the ionosphere‐thermosphere system, resulting in large‐scale ionospheric irregularities with longitudinal and latitudinal asymmetries. Multiple instruments recorded these irregularities, indicating the propagation of a westward wave at an average velocity of 354 ± 8 m/s, which led to plasma irregularities of 0.2 TECu/min. Conversely, an eastward‐propagating wave was detected on the Pacific's east coast, traveling at a speed of 348 ± 6 m/s, with a corresponding decrease in plasma fluctuations to 0.1 TECu/min. In Asia, noticeable plasma irregularities appeared within a few hours after the eruption, and the maximum speed exceeded 1,100 m/s, which cannot be explained by the acoustic wave model. There was also a significant latitudinal asymmetry of ionospheric disturbances in the Asian‐Oceania sector, with the plasma density around Oceania depleted by 2–3 orders of magnitude within the altitudes of ∼150–575 km, while the ion density over Asia was enhanced by 1–2 orders of magnitude, and was uplifted ∼50 km. The plasma temperature was proportional to ion density, indicating the ion temperature reduced ∼500 K and increased 100–200 K around Oceania and Asia, respectively. The equatorial electric field, vertical E × B drifts and thermospheric O/N2 density ratio also fluctuated significantly following the eruption, indicating the redistribution of charged particles due to the magnetic field mapping effect, which was the main contributor to the asymmetries observed.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3