Affiliation:
1. Faculty of Land Resources Engineering Kunming University of Science and Technology Kunming China
2. School of Civil Engineering and Geomatics Shandong University of Technology Zibo China
Abstract
AbstractThe Hunga Tonga‐Hunga Ha'apai volcanic eruption on 15 January 2022 had a significant impact on the ionosphere‐thermosphere system, resulting in large‐scale ionospheric irregularities with longitudinal and latitudinal asymmetries. Multiple instruments recorded these irregularities, indicating the propagation of a westward wave at an average velocity of 354 ± 8 m/s, which led to plasma irregularities of 0.2 TECu/min. Conversely, an eastward‐propagating wave was detected on the Pacific's east coast, traveling at a speed of 348 ± 6 m/s, with a corresponding decrease in plasma fluctuations to 0.1 TECu/min. In Asia, noticeable plasma irregularities appeared within a few hours after the eruption, and the maximum speed exceeded 1,100 m/s, which cannot be explained by the acoustic wave model. There was also a significant latitudinal asymmetry of ionospheric disturbances in the Asian‐Oceania sector, with the plasma density around Oceania depleted by 2–3 orders of magnitude within the altitudes of ∼150–575 km, while the ion density over Asia was enhanced by 1–2 orders of magnitude, and was uplifted ∼50 km. The plasma temperature was proportional to ion density, indicating the ion temperature reduced ∼500 K and increased 100–200 K around Oceania and Asia, respectively. The equatorial electric field, vertical E × B drifts and thermospheric O/N2 density ratio also fluctuated significantly following the eruption, indicating the redistribution of charged particles due to the magnetic field mapping effect, which was the main contributor to the asymmetries observed.
Publisher
American Geophysical Union (AGU)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献