Probabilistic Water Demand Forecasting Using Quantile Regression Algorithms
Author:
Affiliation:
1. School of Engineering University of Patras University Campus Patras Greece
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021WR030216
Reference113 articles.
1. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
2. Untangling hybrid hydrological models with explainable artificial intelligence
3. ETo‐Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000–2018)
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantile Regression Illuminates the Heterogeneous Effect of Water Quality on Phytoplankton in Lake Taihu, China;Water;2024-09-10
2. Improving a hydrological model by coupling it with an LSTM water use forecasting model;Journal of Hydrology;2024-06
3. A Novel Daily Runoff Probability Density Prediction Model Based on Simplified Minimal Gated Memory–Non-Crossing Quantile Regression and Kernel Density Estimation;Water;2023-11-13
4. Short-Term Water Demand Prediction Using Machine Learning Techniques—A Case Study of Telford Borough in Pennsylvania;World Environmental and Water Resources Congress 2023;2023-05-18
5. A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting;Journal of Hydrology;2023-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3