Parsimonious High‐Resolution Landslide Susceptibility Modeling at Continental Scales

Author:

Mirus Benjamin B.1ORCID,Belair Gina M.1ORCID,Wood Nathan J.2ORCID,Jones Jeanne2ORCID,Martinez Sabrina N.1ORCID

Affiliation:

1. U.S. Geological Survey Geologic Hazards Science Center Golden CO USA

2. U.S. Geological Survey Western Geographic Science Center Moffett Field CA USA

Abstract

AbstractLandslide susceptibility maps are fundamental tools for risk reduction, but the coarse resolution of current continental‐scale models is insufficient for local application. Complex relations between topographic and environmental attributes characterizing landslide susceptibility at local scales are not transferrable across areas without landslide data. Existing maps with multiple susceptibility classifications under‐represent landslide potential in moderate and gently sloping terrain. We leverage an extensive landslide database (N = 613,724), a high‐resolution digital elevation model (10‐m), and high‐performance computing resources, to develop a new nationwide susceptibility map for the contiguous United States, Hawaii, Alaska, and Puerto Rico. We calculate four alternative linear and nonlinear thresholds of topographic slope and relief using an objective split‐sample calibration. We down‐sample our results to a 90‐m grid to account for uncertainty in the digital elevation model and landslide position, and evaluate these thresholds' ability to differentiate areas of greater susceptibility. The less conservative nonlinear model optimally balances our priorities of capturing observed landslides (99%) while minimizing area covered by susceptible terrain (43%). Independent evaluation with four statewide landslide inventories (N = 172,367) reinforces our model selection but highlights spatially variable performance. Therefore, we propose a novel approach to susceptibility classification using the concentration of landslide‐prone terrain within each down‐sampled grid. While landslides are possible within any cells containing susceptible terrain, those with the highest concentration capture the majority of observed landslides. Our new map characterizes landside susceptibility more consistently than prior models; our transparent classification approach also provides flexibility for accommodating different tolerances in risk reduction measures.

Funder

U.S. Geological Survey

Publisher

American Geophysical Union (AGU)

Reference77 articles.

1. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface

2. Anderson F. J.(2022).North Dakota Geological Survey: North Dakota landslides phase II[Dataset]. Retrieved fromhttps://www.dmr.nd.gov/ndgs/landslides/

3. Baum R. L.(2018).Preliminary landslide susceptibility maps and data for Hawaii. Retrieved fromhttps://www.usgs.gov/programs/landslide‐hazards/science/preliminary‐landslide‐susceptibility‐maps‐and‐data‐hawaii#overview

4. Belair G. M. Jones E. S. Slaughter S. L. &Mirus B. B.(2022).Landslide inventories across the United States version 2[Dataset].U.S. Geological Survey Data Release.https://doi.org/10.5066/P9FZUX6N

5. Belair G. M. Jones J. M. Martinez S. M. Mirus B. B. &Wood N. J.(2024).Slope‐relief threshold landslide susceptibility models[Dataset].U.S. Geological Survey Data Release.https://doi.org/10.5066/P13KAGU3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3