Affiliation:
1. Laboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL CEA‐CNRS‐UVSQ Université Paris‐Saclay Gif‐sur‐Yvette France
2. Environmental Sciences Division Oak Ridge National Laboratory TN Oak Ridge USA
3. Climate and Ecosystem Sciences Division Lawrencey Berkeley National Laboratory CA Berkeley USA
4. Institute for Agro‐Environmental Sciences National Agriculture and Food Research Organization Ibaraki Japan
5. Université Paris‐Saclay AgroParisTech INRAE UMR Palaiseau France
Abstract
AbstractSimulations of crop yield due to climate change vary widely between models, locations, species, management strategies, and Representative Concentration Pathways (RCPs). To understand how climate and adaptation affects yield change, we developed a meta‐model based on 8703 site‐level process‐model simulations of yield with different future adaptation strategies and climate scenarios for maize, rice, wheat and soybean. We tested 10 statistical models, including some machine learning models, to predict the percentage change in projected future yield relative to the baseline period (2000–2010) as a function of explanatory variables related to adaptation strategy and climate change. We used the best model to produce global maps of yield change for the RCP4.5 scenario and identify the most influential variables affecting yield change using Shapley additive explanations. For most locations, adaptation was the most influential factor determining the projected yield change for maize, rice and wheat. Without adaptation under RCP4.5, all crops are expected to experience average global yield losses of 6%–21%. Adaptation alleviates this average projected loss by 1–13 percentage points. Maize was most responsive to adaptive practices with a projected mean yield loss of −21% [range across locations: −63%, +3.7%] without adaptation and −7.5% [range: −46%, +13%] with adaptation. For maize and rice, irrigation method and cultivar choice were the adaptation types predicted to most prevent large yield losses, respectively. When adaptation practices are applied, some areas are predicted to experience yield gains, especially at northern high latitudes. These results reveal the critical importance of implementing adequate adaptation strategies to mitigate the impact of climate change on crop yields.
Funder
HORIZON EUROPE Marie Sklodowska-Curie Actions
Office of Science
Environmental Restoration and Conservation Agency
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),General Environmental Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献