A Wetting‐Front Model for Vadose Zone Infiltration via Drywells

Author:

Moreno Z.1ORCID,Paster A.2,Kamai T.1ORCID

Affiliation:

1. Institute of Soil, Water and Environmental Sciences Agricultural Research Organization The Volcani Institute Rishon LeZion Israel

2. Senser Ltd Ramat Gan Israel

Abstract

AbstractDrywell infiltration is a common approach to recharge groundwater and reduce load from drainage systems. In order to properly design a drywell, it is critical to predict its infiltration capacity, that is, its response to anticipated precipitation/stormwater/flood events. This is commonly conducted using models that solve the unsaturated flow in the subsurface using complex and costly numerical schemes. This work proposes a different approach, based on a solution for a sharp interface wetting front. The proposed model predicts the water level in the well and the subsurface wetting front location during and after an infiltration event. The model was tested and compared with numerical simulations of Richards' equation and with data from a field experiment, and proved to be sufficiently accurate. The typical run times of the model are smaller than 1 s and about three orders of magnitude shorter compared to the numerical model of Richards' equation. For illustrating possible applications, we use field data: the model is used to estimate the hydraulic properties via parameter optimization. Finally, a sensitivity analysis of the drywell response was conducted, demonstrating some practical applications for analysis, which may be used for properly determining site‐specific drywell design.

Funder

Jewish National Fund

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3