Windmapper: An Efficient Wind Downscaling Method for Hydrological Models

Author:

Marsh Christopher B.1ORCID,Vionnet Vincent2ORCID,Pomeroy John W.1ORCID

Affiliation:

1. Centre for Hydrology University of Saskatchewan Saskatoon SK Canada

2. Meteorological Research Division Environment and Climate Change Gatineau QC Canada

Abstract

AbstractEstimates of near‐surface wind speed and direction are key meteorological components for predicting many surface hydrometeorological processes that influence critical aspects of hydrological and biological systems. However, observations of near‐surface wind are typically spatially sparse. The use of these sparse wind fields to force distributed models, such as hydrological models, is greatly complicated in complex terrain, such as mountain headwaters basins. In these regions, wind flows are heavily impacted by overlapping influences of terrain at different scales. This can have a great impact on calculations of evapotranspiration, snowmelt, and blowing snow transport and sublimation. The use of high‐resolution atmospheric models allows for numerical weather prediction (NWP) model outputs to be dynamically downscaled. However, the computation burden for large spatial extents and long periods of time often precludes their use. Here, a wind‐library approach is presented to aid in downscaling NWP outputs and terrain‐correcting spatially interpolated observations. This approach preserves important spatial characteristics of the flow field at a fraction of the computational costs of even the simplest high‐resolution atmospheric models. This approach improves on previous implementations by: scaling to large spatial extents O(1M km2); approximating lee‐side effects; and fully automating the creation of the wind library. Overall, this approach was shown to have a third quartile RMSE of 1.8  and a third quartile RMSE of 58.2° versus a standalone diagnostic windflow model. The wind velocity estimates versus observations were better than existing empirical terrain‐based estimates and computational savings were approximately 100‐fold versus the diagnostic model.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3