Effects of Automatic Hyperparameter Tuning on the Performance of Multi‐Variate Deep Learning‐Based Rainfall Nowcasting

Author:

Amini Amirmasoud1,Dolatshahi Mehri1,Kerachian Reza1ORCID

Affiliation:

1. School of Civil Engineering College of Engineering University of Tehran Tehran Iran

Abstract

AbstractRainfall nowcasting has become increasingly important as we move into an era where more and more storms are occurring in many countries as a result of climate change. Developing an accurate rainfall nowcasting model could provide insights into rainfall dynamics and ultimately could prevent significant damages. In this paper, deep neural networks (DNNs) and numerical weather predictions (NWPs) are applied for rainfall and runoff forecasting in an urban catchment with a complex drainage system. DNNs are among the most accurate models for rainfall nowcasting. However, the design and training of DNNs are usually complicated. This paper combines different convolutional, long short‐term memory (LSTM)‐based networks and NWPs using ensemble techniques (i.e., bagging, random forest, and adaboost methods) with automatic hyperparameter tuning for multi‐step rainfall nowcasting. The relative humidity, air temperature, and previous rainfall sequences are considered the inputs of the DNNs. We focus on applying two hyperparameter tuning methods (i.e., random search and tree structured Parzen estimator) to improve the performance of the proposed rainfall nowcasting models. The proposed framework was applied to the eastern drainage catchment (EDC) in Tehran city. The results illustrate that the utilization of automatic hyperparameter tuning along with multivariate DNNs, NWPs, and ensemble techniques could improve the nowcasting performance (10%–25%) compared to the traditional univariate models. Also, Adaboost is more accurate than other ensemble techniques in predicting both extreme and normal rainfall events with average RMSE of 0.765, and random forest obtain better results when predict sub normal rainfall events with overall RMSE of 0.315. The proposed framework is applicable to different climates and catchments.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3