Upscaling Permeability Using Multiscale X‐Ray‐CT Images With Digital Rock Modeling and Deep Learning Techniques

Author:

Jiang Fei123ORCID,Guo Yaotian1,Tsuji Takeshi34ORCID,Kato Yoshitake5,Shimokawara Mai5,Esteban Lionel6ORCID,Seyyedi Mojtaba6,Pervukhina Marina6,Lebedev Maxim7ORCID,Kitamura Ryuta5

Affiliation:

1. Department of Mechanical Engineering Yamaguchi University Ube Japan

2. Blue Energy Center for SGE Technology (BEST) Yamaguchi University Ube Japan

3. International Institute for Carbon‐Neutral Energy Research (WPI‐I2CNER) Kyushu University Fukuoka Japan

4. Graduate School of Engineering Department of Systems Innovation The University of Tokyo Tokyo Japan

5. JOGMEC Chiba Japan

6. CSIRO Energy BU Perth Australia

7. Curtin University Perth Australia

Abstract

AbstractThis study presents a workflow to predict the upscaled absolute permeability of the rock core direct from CT images whose resolution is not sufficient to allow direct pore‐scale permeability computation. This workflow exploits the deep learning technique with the data of raw CT images of rocks and their corresponding permeability value obtained by performing flow simulation on high‐resolution CT images. The permeability map of a much larger region in the rock core is predicted by the trained neural network. Finally, the upscaled permeability of the entire rock core is calculated by the Darcy flow solver, and the results showed a good agreement with the experiment data. This proposed deep learning based upscaling method allows estimating the permeability of large‐scale core samples while preserving the effects of fine‐scale pore structure variations due to the local heterogeneity.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3