Size Distributions Reveal Regime Transition of Lake Systems Under Different Dominant Driving Forces

Author:

Hu Shengjie12ORCID,Yang Zhenlei2ORCID,Torres Sergio2ORCID,Wang Zipeng3,Li Ling2ORCID

Affiliation:

1. College of Environmental and Resource Sciences Zhejiang University Hangzhou China

2. Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering Westlake University Hangzhou China

3. School of Science Westlake University Hangzhou China

Abstract

AbstractPower law size distribution is found to associate with fractal, self‐organized behaviors and patterns of complex systems. Such distribution also emerges from natural lakes, with potentially important links to the dynamics of lake systems. But the driving mechanism that generates and shapes this feature in lake systems remains unclear. Moreover, the power law itself was found inadequate for fully describing the size distribution of lakes, due to deviations at the two ends of size range. Based on observed and simulated lakes in China's 11 hydro‐climatic zones, we established a conceptual model for lake systems, which covers the whole size range of lake size distribution and reveals the underlying driving mechanism. The full lake size distribution is composed of three components, with three phases featured by exponential, stretched‐exponential and power law distribution. The three phases represent system states with successively increasing degrees of heterogeneity and orderliness, and more importantly, indicate the dominance of exogenic and endogenic forces, respectively. As the dominant driving force changes from endogenic to exogenic, a phase transition occurs with lake size distribution shifted from power law to stretched‐exponential and further to exponential distribution. Apart from compressing the power law phase, exogenic force also increases its scaling exponent, driving the corresponding lake size power spectrum into the regime of “blue noise.” During this process, the autocorrelation function of the lake system diverges with a possibility of going to infinity, indicating the loss of system resilience.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3