Under What Conditions Does Transverse Macrodispersion Exist in Groundwater Flow?

Author:

Lester Daniel R.1ORCID,Dentz Marco2ORCID,Singh Prajwal3,Bandopadhyay Aditya3

Affiliation:

1. School of Engineering RMIT University Melbourne VIC Australia

2. Spanish National Research Council (IDAEA‐CSIC) Barcelona Spain

3. Indian Institute of Technology Kharagpur (IITK) Kharagpur India

Abstract

AbstractIn recent years there has been vigorous debate whether asymptotic transverse macrodispersion exists in steady three‐dimensional (3D) groundwater flows in the purely advective limit. This question is tied to the topology of 3D flow paths (termed the Lagrangian kinematics), specifically whether streamlines can undergo braiding motions or can wander freely in the transverse direction. In this study we determine which Darcy flows do admit asymptotic transverse macrodispersion for purely advective transport on the basis of the conductivity structure. We prove that porous media with smooth, locally isotropic hydraulic conductivity exhibit zero transverse macrodispersion under pure advection due to constraints on the Lagrangian kinematics of these flows, whereas either non‐smooth or locally anisotropic conductivity fields can generate transverse macrodispersion. This has implications for upscaling locally isotropic porous media to the block scale as this can result in a locally anisotropic conductivity, leading to non‐zero macrodispersion at the block scale that is spurious in that it does not arise for the fully resolved Darcy scale flow. We also show that conventional numerical methods for computation of particle trajectories do not explicitly preserve the kinematic constraints associated with locally isotropic Darcy flow, and propose a novel psuedo‐symplectic method that preserves these constraints. These results provide insights into the mechanisms that govern transverse macrodispersion in groundwater flow, and unify seemingly contradictory results in the literature in a consistent framework. These insights call into question the ability of smooth, locally isotropic conductivity fields to represent flow and transport in real heterogeneous porous media.

Funder

European Regional Development Fund

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3