Stable Water Isotopologue Fractionation During Soil‐Water Evaporation: Analysis Using a Coupled Soil‐Atmosphere Model

Author:

Kiemle Stefanie1ORCID,Heck Katharina1ORCID,Coltman Edward1ORCID,Helmig Rainer1ORCID

Affiliation:

1. Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems University of Stuttgart Stuttgart Germany

Abstract

AbstractThe atmosphere‐soil system forms a highly coupled system, which makes key processes such as evaporation complex to analyze as the mass, energy, and momentum transfer is influenced by both domains. To enhance the understanding of evaporation processes from soils, stable water isotopologues are suitable tools to trace water movement within these systems as heavier isotopologues enrich in the residual liquid phase. Due to the complex coupled processes involved in simulating soil‐water evaporation accurately, quantifying fractionation during flow and transport processes at the soil‐atmosphere interface remains an open research area. In this work, we present a multi‐phase multi‐component transport model that resolves flow through the near‐surface atmosphere and the soil, and models transport and fractionation of the stable water isotopologues using the numerical simulation environment DuMux. Using this coupled model, we simulate transport and fractionation processes of stable water isotopologues in soils and the atmosphere by solving compositional flow equations and by using suitable coupling conditions at the soil‐atmosphere interface instead of commonly used parameterization. In a series of examples of evaporation from bare soil, the transport and distribution of stable water isotopologues are evaluated numerically with varied conditions and assumptions, including different atmospheric conditions (turbulent/laminar flow, wind speed) and their impact on the spatial and temporal distribution of the isotopic composition. Building on these results, we observed how the enrichment of the isotopologues in soil is linked with the different stages of the evaporation process. A qualitative study is conducted to verify single fractionation processes in our approach.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3