Numerical Simulation of the Large‐Scale Huangtian (China) Landslide‐Generated Impulse Waves by a GPU‐Accelerated Three‐Dimensional Soil‒Water Coupled SPH Model

Author:

Huang Can1,Hu Chao1,An Yi2ORCID,Shi Chuanqi2,Feng Chun2,Wang Huaning3,Liu Qingquan1ORCID,Wang Xiaoliang1

Affiliation:

1. Department of Mechanics School of Aerospace Engineering Beijing Institute of Technology Beijing China

2. Institute of Mechanics Chinese Academy of Sciences Beijing China

3. School of Aerospace Engineering and Applied Mechanics Tongji University Shanghai China

Abstract

AbstractThis work presents an improved soil‒water coupling model to simulate landslide‐generated impulse waves (LGIWs) in a unified smoothed particle hydrodynamics (SPH) framework, where both water flow and landslide motions are modeled by SPH using an interface coupling technique. Graphics processing unit technology based on an open‐source platform DualSPHysics is chosen to employ the landslide dynamics and soil‒water interface coupling to achieve the capability of large‐scale simulation and high‐resolution modeling for three‐dimensional LGIW problems. A subaerial landslide‐generated water waves, is simulated to demonstrate the accuracy and ability of this model. The Huangtian LGIW is then simulated to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. Particle resolution dependence is examined, giving a particle distance of 5.0 m, which can provide a converged landslide deposit and surge wave. The simulation shows that in the Huangtian LGIW, the landslide deposit volume was approximately 41.6 million m3 (600 m width, 768 m length, and 400 m above the still water level), with an immersed landslide volume of 11.3 million m3; for the surge wave, the maximum wave and run‐up heights were 34.3 and 48 m, respectively. These results are within the estimated ranges of both the landslide and surge wave according to limited field survey data. The case study of the Huangtian LGIW provides a typical reference of how to reproduce a reliable whole process of large scale multi‐physical and multiscale LGIW, including full information of landslide dynamics, interface coupling behavior, and surge wave characteristics.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3