Characterizing Errors Using Satellite Metadata for Eco‐Hydrological Model Calibration

Author:

Zou Hui1ORCID,Marshall Lucy12ORCID,Sharma Ashish1ORCID

Affiliation:

1. Water Research Centre School of Civil and Environmental Engineering UNSW Sydney Sydney NSW Australia

2. Faculty of Science and Engineering Macquarie University Sydney NSW Australia

Abstract

AbstractUnderstanding the origins of errors between model predictions and catchment observations is a critical element in hydrologic model calibration and uncertainty estimation. Difficulties arise because there are a variety of error sources but only one measure of the total residual error between model predictions and catchment observations. One promising approach is to collect extra information a priori to characterize the data error before calibration. We implement here a new model calibration strategy for an ecohydrological model, using the satellite metadata information as a means to inform the model priors, to decompose data error from total residual error. This approach, referred to as Bayesian ecohydrological error model (BEEM), is first examined in a synthetic setting to establish its validity, and then applied to three real catchments across Australia. Results show that (a) BEEM is valid in a synthetic setting, as it can perfectly ascertain the true underlying error; (b) in real catchments the model error is reduced when utilizing the observation error variance as added error contributing to total error variance, while the magnitude of total residual error is more robust when utilizing metadata about the data quality proportionality as the basis for assigning total error variance; (c) BEEM improves model calibration by estimating the model error appropriately and estimating the uncertainty interval more precisely. Overall, our work demonstrates a new approach to collect prior error information in satellite metadata and reveals the potential for fully utilizing metadata about error sources in uncertainty estimation.

Funder

Australian Government

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3