Exploratory Analysis of Surrogate Metrics to Assess the Resilience of Water Distribution Networks

Author:

Carneiro Joana1ORCID,Loureiro Dália2,Covas Dídia1ORCID

Affiliation:

1. CERIS Instituto Superior Técnico Universidade de Lisboa Lisboa Portugal

2. Urban Water Unit National Civil Engineering Laboratory Lisbon Portugal

Abstract

AbstractThis study compares and discusses the adequacy of surrogate resilience metrics proposed in the literature for resilience assessment of drinking water systems concerning demand increase and network redundancy. A sensitivity analysis is carried out for increasing flow rates using a conceptual case study with different layouts and demand scenarios, selecting several metrics to assess the resilience of two real network areas. Resilience metrics based on surplus energy are sensitive to network layout and demand scenarios. The network resilience index considers hydraulic reliability and network diameter uniformity. In contrast, the weighted resilience index also considers the network topology and gives importance to pipes with higher flow rates. Entropy‐based resilience metrics mainly rely on the network flows' uniformity and are sensitive to pipe redundancy. The entropy metric most adequate to assess the hydraulic capacity is the diameter‐sensitive flow entropy, since it is sensitive to the velocity inside the pipes. Topology metrics cannot assess the hydraulic capacity though evaluate the system redundancy (meshed‐ness coefficient), robustness (central‐point dominance) and water transportation efficiency (average‐path length). Surrogate resilience metrics do not assess the system performance during a failure. They indicate systems which are better prepared to overcome failure events and increased demand events, providing vital information to drinking water systems management.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3