Considering Uncertainty of Historical Ice Jam Flood Records in a Bayesian Frequency Analysis for the Peace‐Athabasca Delta

Author:

Smith Jared D.12ORCID,Lamontagne Jonathan R.3ORCID,Jasek Martin4

Affiliation:

1. University of Virginia Department of Engineering Systems and Environment Charlottesville VA USA

2. Now at U.S. Geological Survey Reston VA USA

3. Tufts University Department of Civil and Environmental Engineering Medford MA USA

4. BC Hydro Burnaby BC Canada

Abstract

AbstractThe Peace‐Athabasca Delta in Alberta, Canada has numerous perched basins that are primarily recharged after large ice jams cause floods (an ecological benefit). Previous studies have estimated that such large floods are likely to decrease in frequency under various climate projections. However, there is a sizable uncertainty range in these predicted flood probabilities, in part due to the short 60‐year systematic record that contained few large ice jam floods. An additional 50 years of historical data are available from various sources, with expert‐interpreted flood categories; however, these categorizations are uncertain in magnitude and occurrence. We developed a Bayesian framework that considers magnitude and occurrence uncertainties within a logistic regression model that predicts the annual probability of a large flood. The Bayesian regression estimates the joint distribution of parameters describing the effects of climatic factors and parameters that describe the probability that historical flood magnitudes were recorded as large (or not) when a truly large (or not) flood occurred. We compare four models for hindcasting and projecting large ice jam flood probabilities in future climates. The models consider: (a) historical data uncertainty, (b) no historical data uncertainty, (c) only the systematic record, and (d) the systematic record with a different model. Neglecting historical data uncertainty provides inaccurate estimates, while using only the systematic record provides wider prediction intervals than considering the full record with uncertain historical data. Thus, we demonstrate that including uncertain historical information can effectively extend the record length and make flood frequency analyses more accurate and precise.

Funder

BC Hydro

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3