Time‐Variability of Flow Recession Dynamics: Application of Machine Learning and Learning From the Machine

Author:

Kim Minseok12ORCID,Bauser Hannes H.23ORCID,Beven Keith4ORCID,Troch Peter A.3ORCID

Affiliation:

1. Department of Civil Engineering Pusan National University Busan Republic of Korea

2. Biosphere 2 University of Arizona Tucson AZ USA

3. Department of Hydrology and Atmospheric Sciences University of Arizona Tucson AZ USA

4. Lancaster Environment Centre Lancaster University Lancaster UK

Abstract

AbstractFlow recession analysis, relating discharge Q and its time rate of change −dQ/dt, has been widely used to understand catchment scale flow dynamics. However, data points in the recession plot, the plot of −dQ/dt versus Q, typically form a wide point cloud due to noise and hysteresis in the storage‐discharge relationship, and it is still unclear what information we can extract from the plot and how to understand the information. There seem to be two contrasting approaches to interpret the plot. One emphasizes the importance of the ensemble characteristics of many recessions (i.e., the lower envelope or a measure of central tendency), and the other highlights the importance of the event scale analysis and questions the meaning of the ensemble characteristics. We examine if those approaches can be reconciled. We utilize a machine learning tool to capture the point cloud using the past trajectory of daily discharge. Our model results for a catchment show that most of the data points can be captured using 5 days of past discharge. We show that we can learn the catchment scale flow recession dynamics from what the machine learned. We analyze patterns learned by the machine and explain and hypothesize why the machine learned those characteristics. The hysteresis in the plot mainly occurs during the early time dynamics, and the flow recession dynamics eventually converge to an attractor in the plot, which represents the master recession curve. We also illustrate that a hysteretic storage‐discharge relationship can be estimated based on the attractor.

Funder

Philecology Foundation

University of Arizona

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Reference68 articles.

1. Abadi M. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. et al. (2015).TensorFlow: Large‐scale machine learning on heterogeneous systems.

2. The CAMELS data set: catchment attributes and meteorology for large-sample studies

3. Interpretation of recession flow

4. The structure of discharge-recession curves

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3