Enhanced Variability and Declining Trend of Soil Moisture Since the 1880s on the Southeastern Tibetan Plateau

Author:

Wang Lu1ORCID,Liu Hongyan1ORCID,Grießinger Jussi2ORCID,Chen Deliang3ORCID,Sun Changfeng4,Fang Congxi5ORCID

Affiliation:

1. College of Urban and Environmental Sciences Peking University Beijing China

2. Friedrich‐Alexander‐University Erlangen‐Nürnberg Institute of Geography Erlangen Germany

3. Department of Earth Sciences University of Gothenburg Gothenburg Sweden

4. Institute of Global Environmental Change Xi'an Jiaotong University Xi'an China

5. Institute of Mountain Hazards and Environment Chinese Academy of Sciences Chengdu China

Abstract

AbstractHistorical soil moisture (SM) variations, trends, and their driving factors remain scarce for the area of Tibetan Plateau (TP), which hinders putting a sensible assessment of the current and future ecological drought risk into perspective. Here, we report the first three century‐long regional summer (July–August) SM reconstruction for the southeastern TP during 1691–2007 CE using a paleoclimate proxy, that is, tree‐ring δ18O. The SM reconstruction, which explained 60.9% of the actual variance, revealed that an abrupt wet‐to‐dry change occurred in 1884. After 1884, SM exhibited a decreasing trend and enhanced variability, and dry summers occurred more frequently. In particular, the variability in SM reached an unprecedented level after the 1950s relative to that during the past three centuries. A structural equation model and running correlation analysis revealed that SM variation was mainly controlled by precipitation rather than temperature. This indicates that the anthropogenic‐related weakening of the Indian summer monsoon played a more dominant role in SM changes after 1884 than the increase in temperature. If the SM variability is to be further increased in the future, it may undermine ecosystem stability and forest health. The results of this study are significant for predicting ecological drought in ecologically vulnerable regions such as the High Asia.

Funder

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3