Large‐Domain Multisite Precipitation Generation: Operational Blueprint and Demonstration for 1,000 Sites

Author:

Papalexiou Simon Michael12ORCID,Serinaldi Francesco34ORCID,Clark Martyn P.5ORCID

Affiliation:

1. Department of Civil Engineering University of Calgary Calgary AB Canada

2. Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czechia

3. School of Engineering Newcastle University Newcastle Upon Tyne UK

4. Willis Research Network London UK

5. Coldwater Laboratory University of Saskatchewan Centre for Hydrology Canmore AB Canada

Abstract

AbstractStochastic simulations of spatiotemporal patterns of hydroclimatic processes, such as precipitation, are needed to build alternative but equally plausible inputs for water‐related design and management, and to estimate uncertainty and assess risks. However, while existing stochastic simulation methods are mature enough to deal with relatively small domains and coarse spatiotemporal scales, additional work is required to develop simulation tools for large‐domain analyses, which are more and more common in an increasingly interconnected world. This study proposes a methodological advancement in the CoSMoS framework, which is a flexible simulation framework preserving arbitrary marginal distributions and correlations, to dramatically decrease the computational burden and make the algorithm fast enough to perform large‐domain simulations in short time. The proposed approach focuses on correlated processes with mixed (zero‐inflated) Uniform marginal distributions. These correlated processes act as intermediates between the target process to simulate (precipitation) and parent Gaussian processes that are the core of the simulation algorithm. Working in the mixed‐Uniform space enables a substantial simplification of the so‐called correlation transformation functions, which represent a computational bottle neck in the original CoSMoS formulation. As a proof of concept, we simulate 40 years of daily precipitation records from 1,000 gauging stations in the Mississippi River basin. Moreover, we extend CoSMoS incorporating parent non‐Gaussian processes with different degrees of tail dependence and suggest potential improvements including the separate simulation of occurrence and intensity processes, and the use of advection, anisotropy, and nonstationary spatiotemporal correlation functions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3