Time Domain Reflectometry Waveform Interpretation With Convolutional Neural Networks

Author:

Wang Zhuangji12ORCID,Hua Shan3,Timlin Dennis1ORCID,Kojima Yuki4ORCID,Lu Songtao5ORCID,Sun Wenguang16,Fleisher David1ORCID,Horton Robert7,Reddy Vangimalla R.1,Tully Katherine2ORCID

Affiliation:

1. Adaptive Cropping System Laboratory USDA‐ARS Beltsville MD USA

2. Department of Plant Science and Landscape Architecture University of Maryland College Park MD USA

3. Institute of Agricultural Equipment Zhejiang Academy of Agricultural Sciences Hangzhou China

4. Department of Civil Engineering Gifu University Gifu Japan

5. IBM Research Thomas J. Watson Research Center NY Yorktown Heights USA

6. Nebraska Water Center University of Nebraska Lincoln NE USA

7. Department of Agronomy Iowa State University Ames IA USA

Abstract

AbstractInterpreting time domain reflectometry (TDR) waveforms obtained in soils with non‐uniform water content is an open question. We design a new TDR waveform interpretation model based on convolutional neural networks (CNNs) that can reveal the spatial variations of soil relative permittivity and water content along a TDR sensor. The proposed model, namely TDR‐CNN, is constructed with three modules. First, the geometrical features of the TDR waveforms are extracted with a simplified version of VGG16 network. Second, the reflection positions in a TDR waveform are traced using a 1D version of the region proposal network. Finally, the soil relative permittivity values are estimated via a CNN regression network. The three modules are developed in Python using Google TensorFlow and Keras API, and then stacked together to formulate the TDR‐CNN architecture. Each module is trained separately, and data transfer among the modules can be facilitated automatically. TDR‐CNN is evaluated using simulated TDR waveforms with varying relative permittivity but under a relatively stable soil electrical conductivity, and the accuracy and stability of the TDR‐CNN are shown. TDR measurements from a water infiltration study provide an application for TDR‐CNN and a comparison between TDR‐CNN and an inverse model. The proposed TDR‐CNN model is simple to implement, and modules in TDR‐CNN can be updated or fine‐tuned individually with new data sets. In conclusion, TDR‐CNN presents a model architecture that can be used to interpret TDR waveforms obtained in soil with a heterogeneous water content distribution.

Funder

U.S. Department of Agriculture

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Reference32 articles.

1. Abadi M. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. et al. (2015).TensorFlow: Large‐scale machine learning on heterogeneous systems. Retrieved fromtensorflow.org

2. Approximations for modulus of gradients and their applications to neighborhood filters

3. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

4. Soil water content inverse profiling from single TDR waveforms

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3