Ice Freeze‐Up and Break‐Up in Arctic Rivers Observed With Satellite L‐Band Passive Microwave Data From 2010 to 2020

Author:

Podkowa A.1ORCID,Kugler Z.2ORCID,Nghiem S. V.3ORCID,Brakenridge G. R.4ORCID

Affiliation:

1. Department of Photogrammetry Remote Sensing and Spatial Information Systems Faculty of Geodesy and Cartography Warsaw University of Technology Warsaw Poland

2. Department of Photogrammetry and Geoinformatics Budapest University of Technology and Economics Budapest Hungary

3. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

4. Institute of Arctic and Alpine Research University of Colorado Boulder CO USA

Abstract

AbstractThe timing of ice freeze‐up and break‐up in the Arctic may be responding to climate change. Passive microwave remote sensing is a powerful technique for monitoring this timing. We processed low‐frequency microwave time series from the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission for a set of 31 satellite gauging reaches (SGRs) above 65°N between 2010 and 2020 to determine timing of freeze‐up and break‐up and annual river ice durations. We found indication of progressive ice cover reduction over more than half of the monitored river reaches, with possibly the fastest rate occurring over northeast Russia. Some rivers in high‐latitude North America experienced a slight increase in ice cover. Across the data set, we observed an average 2.2 days shift toward later ice freeze‐up in autumn and an average 0.6 days shift toward earlier ice break‐up in spring, resulting in an average decrease of 3.4 days in ice duration between 2010 and 2020. River reaches with the longest duration of ice cover appeared to have experienced the fastest rate of decrease. A possible reduction of the time lag between air temperature rise or fall and corresponding river ice break‐up and freeze‐up was also observed. Yet results on variability are carefuly interpreted given the short length of the time series (2010–2020) and the low statistical confidence rates calculated for the decadal tendency. Still outcomes are consistent with increases in global and Arctic surface air temperature. Following these time series over the next decade using passive microwave satellite sensors can monitor ice cover duration in the Arctic and will further determine temporal and regional trends.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3