A Pareto‐Based Sensitivity Analysis and Multiobjective Calibration Approach for Integrating Streamflow and Evaporation Data

Author:

Yeste Patricio12ORCID,Melsen Lieke A.3ORCID,García‐Valdecasas Ojeda Matilde12ORCID,Gámiz‐Fortis Sonia R.12ORCID,Castro‐Díez Yolanda12,Esteban‐Parra María Jesús12ORCID

Affiliation:

1. Department of Applied Physics University of Granada Granada Spain

2. Andalusian Institute for Earth System Research (IISTA‐CEAMA) University of Granada Granada Spain

3. Hydrology and Quantitative Water Management Group, Wageningen University Wageningen The Netherlands

Abstract

AbstractEvaporation is gaining increasing attention as a calibration and evaluation variable in hydrologic studies that seek to improve the physical realism of hydrologic models and go beyond the long‐established streamflow‐only calibration. However, this trend is not yet reflected in sensitivity analyses aimed at determining the relevant parameters to calibrate, where streamflow has traditionally played a leading role. On the basis of a Pareto optimization approach, we propose a framework to integrate the temporal dynamics of streamflow and evaporation into the sensitivity analysis and calibration stages of the hydrologic modeling exercise, here referred to as “Pareto‐based sensitivity analysis” and “multiobjective calibration.” The framework is successfully applied to a case study using the Variable Infiltration Capacity (VIC) model in three catchments located in Spain as representative of the different hydroclimatic conditions within the Iberian Peninsula. Several VIC vegetation parameters were identified as important to the performance estimates for evaporation during sensitivity analysis, and therefore were suitable candidates to improve the model representation of evaporative fluxes. Sensitivities for the streamflow performance, in turn, were mostly driven by the soil and routing parameters, with little contribution from the vegetation parameters. The multiobjective calibration experiments were carried out for the most parsimonious parameterization after a comparative analysis of the performance gains and losses for streamflow and evaporation, and yielded optimal adjustments for both hydrologic variables simultaneously. Results from this study will help to develop a better understanding of the trade‐offs resulting from the joint integration of streamflow and evaporation data into modeling frameworks.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3