Spatially Explicit Linkages Between Redox Potential Cycles and Soil Moisture Fluctuations

Author:

Miele Filippo1,Benettin Paolo1ORCID,Wang Simiao2,Retti Ivan2,Asadollahi Mitra1ORCID,Frutschi Manon2,Mohanty Binayak3ORCID,Bernier‐Latmani Rizlan2,Rinaldo Andrea14ORCID

Affiliation:

1. Laboratory of Ecohydrology ENAC/IIE/ECHO École Polytechnique Fédérale de Lausanne Lausanne Switzerland

2. Environmental Microbiology Laboratory ENAC/IIE/EML École Polytechnique Fédérale de Lausanne Lausanne Switzerland

3. Department of Agricultural and Biological Engineering Texas A & M University College Station TX USA

4. Dipartimento ICEA Università degli studi di Padova Padova Italy

Abstract

AbstractReduction‐oxidation cycles measured through soil redox potential (Eh) are associated with dynamic soil microbial activity. Understanding changes in the composition of, and resource use by, soil microbial communities requires Eh predictability under shifting hydrologic drivers. Here, 50‐cm soil column installations are manipulated to vary hydrologic and geochemical conditions, and are extensively monitored by a dense instrumental deployment to record the depth‐time variation of physical and biogeochemical conditions. We contrast measurements of Eh, soil saturation and key compounds in water samples (probing the majority of soil microbial metabolisms) with computations of the relevant state variables, to investigate the interplay between soil moisture and redox potential dynamics. Our results highlight the importance of joint spatially resolved hydrologic flow/transport and redox processes, the worth of contrasting experiments and computations for a sufficient understanding of the Eh dynamics, and the minimum amount of biogeochemistry needed to characterize the dynamics of electron donors/acceptors that are responsible for the patterns of Eh not directly explained by physical oxic/anoxic transitions. As an example, measured concentrations of sulfate, ammonium and iron II suggest coexistence of both oxic and anoxic conditions. We find that the local saturation velocity (a threshold value of the time derivative of soil saturation) exerts a significant hysteretic control on oxygen intrusion and on the cycling of redox potentials, in contrast with approaches using a single threshold saturation level as the determinant of anoxic conditions. Our findings improve our ability to target how and where hotspots of activity develop within soil microbial communities.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3