Dynamic Adaptive Environmental Flows (DAE‐Flows) to Reconcile Long‐Term Ecosystem Demands With Hydropower Objectives

Author:

Dalcin Ana Paula1ORCID,Marques Guilherme Fernandes1ORCID,Tilmant Amaury2ORCID,Olivares Marcelo3ORCID

Affiliation:

1. Instituto de Pesquisas Hidráulicas (IPH) Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil

2. Department of Civil and Water Engineering Université Laval Quebec City QC Canada

3. Department of Civil and Water Engineering Universidad de Chile Santiago City Chile

Abstract

AbstractThis study investigates how environmental flows (e‐flows) can be designed as dynamic operating policies to optimize long‐term economic and ecosystem performance in reservoir systems. The main goal is to provide e‐flow solutions that contribute to better preparedness and flexibility of hydro‐systems to face multiyear stress periods, reducing the impact of water crises. The methodology framework combines a fish‐flow model with a multi‐objective evolutionary algorithm to construct multiple environmental water demand curves and capture the opportunity cost of different levels of ecosystem preservation. The water demand curves applied to a stochastic dynamic hydro‐economic model then derive dynamic e‐flow policies that balance immediate and future water use tradeoffs. The approach, termed dynamically adaptive environmental flows (DAE‐flows), is demonstrated on the Paraná River Basin, Brazil, a large‐scale hydropower system. Results show that the approach can adjust e‐flows (coordinated with other hydro‐system releases) over the time horizon, sacrificing them at certain times at the expense of some ecosystem loss, but improving long‐term ecosystem functioning. A long‐term approach to adaptation also yields better results for the environment without imposing a hard constraint to hydropower during droughts. Even under a drier climate change scenario, this allowed maintenance and improvement of environmental performance in most years, so during severe droughts the water could still be reallocated to hydropower but at a lesser cost to the environment.

Funder

Inter-American Institute for Global Change Research

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3