HAPPy to Control: A Heuristic And Predictive Policy to Control Large Urban Drainage Systems

Author:

van der Werf J. A.1ORCID,Kapelan Z.1ORCID,Langeveld J. G.12ORCID

Affiliation:

1. Section Sanitary Engineering Department of Watermanagement Faculty of Civil Engineering Delft University of Technology Delft the Netherlands

2. Partners4UrbanWater Nijmegen the Netherlands

Abstract

AbstractModel Predictive Control (MPC) of Urban Drainage Systems (UDS) has been established as a cost‐effective method to reduce pollution. However, the operation of large UDS (containing over 20 actuators) can only be optimized by oversimplifying the UDS dynamics, potentially leading to a decrease in performance and reduction in users' trust, thus inhibiting widespread implementation of MPC procedures. A Heuristic And Predictive Policy (HAPPy) was set up, relying on the dynamic selection of the actuators with the highest impact on the UDS functioning and optimizing those in real‐time. The remaining actuators follow a pre‐set heuristic procedure. The HAPPy procedure was applied to two separate UDS in Rotterdam with the control objective being the minimization of overflow volume in each of the two cases. Results obtained show that the level of impact of the actuators on the UDS functioning changes during an event and can be predicted using a Random Forest algorithm. These predictions can be used to provide near‐global optimal actuator settings resulting in the performance of the HAPPy procedure that is comparable to a full‐MPC control and outperforming heuristic control procedures. The number of actuators selected to obtain near‐global optimal settings depends on the UDS and rainfall characteristics showing an asymptotic real‐time control (RTC) performance as the number of actuators increases. The HAPPy procedure showed different RTC dynamics for medium and large rainfall events, with the former showing a higher level of controllability than the latter. For medium events, a relatively small number of actuators suffices to achieve the potential performance improvement.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3