Woodland Establishment Reduces Nutrient Losses to Waterbodies in Urban Catchments: A Review of the Evidence

Author:

Hutchins Michael G.12ORCID,Qu Yueming1,Baker Henry J.2

Affiliation:

1. UK Centre for Ecology and Hydrology Wallingford UK

2. Department of Earth Sciences Royal Holloway University of London Egham UK

Abstract

AbstractSystematic review of peer‐reviewed literature was undertaken to establish benefits of urban forests on reducing nutrient concentrations in adjacent or downstream waterbodies. Following screening, a small number of articles (40) were found relevant, representing studies quantifying non‐point source nutrient losses from urban and peri‐urban environments. Evidence was split between plot‐ and catchment‐scale. Plot‐scale studies often included evaluations of engineered nature‐based solutions. At catchment‐scale, studies of streamwater quality typically investigated influence of contributory catchment nutrient sources. Wide ranges of beneficial reductions were apparent, and at both scales not all studies identified significant benefits. Summarizing against this backdrop, at plot (micro‐) scale woodland reduces mean concentrations in runoff, soil or groundwater by an average of 44.2% for total nitrogen (TN) and 47.0% for total phosphorus (TP). At catchment (meso‐) scale, evidence suggests a 20% areal addition of forest at the expense of mixed urban fabric can reduce mean concentrations by 15.7% and 12.6% for TN and TP respectively. Additionally, some articles reveal potential drawbacks reducing benefits provided specifically by street trees and riparian woodland. Leaf litter falling on impervious surfaces can heighten risk of TP leaching to streams, but has little impact on TN. Riparian woodland was found to have complex water quality impacts. Canopy cover suppresses stream channel biological nitrogen uptake, which based on all evidence appears considerable. However, unshaded headwaters can foster accelerated primary productivity with undesirable downstream consequences. Overall, gathering further evidence is encouraged, given current uncertainties, especially to address differences between impervious, permeable and riparian urban woodland settings.

Funder

Economic and Social Research Council

Centre for Ecology and Hydrology

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Reference63 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3