Affiliation:
1. Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside CA USA
2. School of Public Policy University of California Riverside Riverside CA USA
Abstract
AbstractA changing climate and often unregulated water extractions have exposed over 2 billion people to water stress worldwide. While water managers have explored a portfolio of options to reduce this stress, supply augmentation through reuse of treated municipal wastewater is becoming increasingly attractive. Wastewater treatment plants protect water quality and prevent sewage from contaminating waterways. Increasingly, this resource is utilized for numerous human (e.g., irrigation, drinking water, groundwater recharge) and conservation (e.g., stream and river recharge) needs in water stressed regions. To understand the role treated municipal wastewater plays in impacting conservation objectives we identified the intersection of wastewater treatment plant locations and occurrences of threatened and endangered (T&E) species in California and compared the permitted contribution of effluent to baseflow quantities of the receiving waterbody to assess the degree to which changes in effluent could affect instream waterbodies. We found a positive correlation between the presence of treatment plants and T&E species in California watersheds—a quarter of species have 100% of their range in watersheds with at least one treatment plant. This correlation is greatest for species associated with terraces and riparian habitat, followed by aquatic habitat and aquatic emergent vegetation. One‐third of watersheds in our analysis can receive most of their cumulative watershed baseflow from effluent and are characterized by dense urbanization or agriculture. Our analysis demonstrates that the fates of T&E species and effluent are interconnected in ways important for water policy, suggesting that species conservation goals should be considered when making decisions about effluent reuse.
Funder
National Science Foundation
National Institute of Food and Agriculture
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献