Experimental Observations of Bedload Tracer Movement: Effects of Mixed Particle Sizes and Bedforms

Author:

Singh Arvind1ORCID,Wu Zi12ORCID,Wilcock Peter3ORCID,Foufoula‐Georgiou Efi45ORCID

Affiliation:

1. Department of Civil, Environmental and Construction Engineering University of Central Florida Orlando FL USA

2. State Key Laboratory of Hydro science and Engineering Department of Hydraulic Engineering Tsinghua University Beijing China

3. Department of Watershed Sciences Utah State University Logan UT USA

4. Department of Civil and Environmental Engineering University of California Irvine Irvine CA USA

5. Department of Earth System Science University of California Irvine Irvine CA USA

Abstract

AbstractPredicting the transport of bedload tracer particles is a problem of significant theoretical and practical interest. Yet, little understanding exists for transport in rivers in the presence of bedforms, which may trap grains and thereby influence travel distance. In a series of flume experiments with a sandy gravel bed in a large experimental flume, bed elevation and tracer travel distances were measured at high resolution for a range of discharges. As discharge increased, bedform height increased and bedform length decreased, increasing bedform steepness. For all tracer sizes and flow conditions, bedforms act as primary controls on the tracer travel distances. Bedform trapping increases linearly with the ratio of bedform height to tracer grain size, with 50% trapping efficiency for a ratio of two and 90% trapping efficiency for a ratio of four. A theoretical model based on the extended active layer formulation for sediment transport is able to capture much of the distribution of measured travel distances for all tracer sizes and discharges, providing a first connection between tracer transport theory and bedform trapping and indicating normal diffusion of tracers at relatively small timescales. Variable bedform geometry can influence trap efficiency for individual bedforms and the theoretical model can help identify “preferential trapping” conditions. The distribution of tracer travel distances for a mixture of grain sizes and variable discharge, as expected in natural rivers, displays heavy tail characteristics.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3