Experimental Investigations of Fracture Deformation, Flow, and Transport Using a Pressure‐Controlled Hele‐Shaw Cell and Digital Fabrication

Author:

Villamor‐Lora Rafael1ORCID,Germaine John T.2,Einstein Herbert H.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA USA

2. Department of Civil and Environmental Engineering Tufts University Medford MA USA

Abstract

AbstractIn this paper we present a novel pressure‐controlled Hele‐Shaw cell to investigate different physical processes in rough fractures using 3D‐printed rock analogs. Our system can measure high‐resolution fracture aperture and tracer concentration maps under relevant field stress conditions. Using a series of hydraulic and visual measurements, combined with numerical simulations, we investigate the evolving fracture geometry characteristics, pressure‐dependent hydraulic transmissivity, flow channeling, and the nature of mass transport as a function of normal stress. Our experimental results show that as the fracture closes and deforms under increasing normal loading: (a) the contact areas grow in number and size; (b) the flow paths become more focused and tortuous; and (c) the transport dynamics of conservative tracers evolve toward a higher dispersive regime. Moreover, under the applied experimental conditions, we observed excellent agreement between the simulated‐ and the experimentally measured‐hydraulic behavior.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3