Predicting Daily River Chlorophyll Concentrations at a Continental Scale

Author:

Savoy Philip1ORCID,Harvey Judson W.2ORCID

Affiliation:

1. New York Water Science Center U.S. Geological Survey Troy NY USA

2. Earth System Processes Division U.S. Geological Survey Reston VA USA

Abstract

AbstractEutrophication is one of the largest threats to aquatic ecosystems and chlorophyll a measurements are relevant indicators of trophic state and algal abundance. Many studies have modeled chlorophyll a in rivers but model development and testing has largely occurred at individual sites which hampers creating generalized models capable of making broad‐scale predictions. To address this gap, we compiled a large data set of chlorophyll a concentrations matched to other water quality, meteorological, and reach characteristic data for a diverse set of 82 streams and rivers across the United States. We used this data set and extreme gradient boosting, a tree‐based machine learning algorithm, to predict daily chlorophyll a concentrations. Furthermore, we tested several practical considerations of broad‐scale models, such as making predictions at sites not included in model training or the utility of in situ water quality data versus universally available remotely estimated model inputs. Predictions were very strongly correlated to observations when compared against a randomly withheld subset of days; however, the model had lower accuracy when applied to completely novel sites withheld from model training. Turbidity and total nitrogen were the two most important variables for predicting chlorophyll a. Although in situ variables improved modeled estimates and were identified as more important during model interpretation, using only remote inputs still resulted in highly correlated predictions with small bias. Testing a model across many sites allowed for identification of common variables relevant to chlorophyll a and highlighted several challenges for applying data‐driven models to new sites or at larger spatial scales.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3