Investigating the Representative of Aquifer Transmissivity Determined by Passive Response Methods: A Comparison With Time‐Dependent Hydraulic Parameters Inferred From Different Stages of Pumping Tests

Author:

Qi Zhiyu1,Shi Zheming12ORCID,Rasmussen Todd3ORCID,Guo Huaming1ORCID,Wang Guangcai1

Affiliation:

1. MOE Key Laboratory of Groundwater Circulation and Environmental Evolution China University of Geosciences Beijing China

2. School of Water Resources and Environment China University of Geosciences Beijing China

3. Warnell School of Forestry and Natural Resources University of Georgia Athens GA USA

Abstract

AbstractAquifer pumping tests represent a standard method for estimating hydraulic characteristics, with practitioners often focusing on late period drawdown data because these are less affected by within‐ and near‐borehole effects (e.g., borehole‐storage and skin effects). Alternatively, groundwater responses to natural forcing (e.g., barometric pressure and earth tides) provide a passive method for estimating aquifer parameters at a low cost. However, to the best of our knowledge, no studies have compared parameters calculated from different periods within a pumping test with those from passive methods. Herein, we compare the aquifer transmissivity estimated using both active and passive methods in two wells located in the Beetaloo Region of Northern Australia. The active method estimates aquifer transmissivity during three periods (i.e., the early, middle, and late periods) of an aquifer pumping test, while the passive method employs groundwater responses to barometric‐pressure and earth‐tide fluctuations. We find that the range of best‐fit aquifer transmissivity is 1.18 × 10−5–1.79 × 10−5 m2/s and 1.73 × 10−5–2.14 × 10−5 m2/s for OW1 and OW2, respectively. The transmissivity estimated from the barometric pressure response method is the largest. The aquifer transmissivity using barometric pressure responses are consistent with early‐ and middle‐period estimates. This suggests that barometric pressure responses are more sensitive to within‐ and near‐borehole effects. The scales of the tidal response method are smaller than those of the pumping test method.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3