Isoprene Production and Its Driving Factors in the Northwest Pacific Ocean

Author:

Wang Jian1,Zhang Hong‐Hai1ORCID,Booge Dennis2ORCID,Zhang Yue‐Qi3ORCID,Li Xiao‐Jun1,Wu Ying‐Cui1,Zhang Jia‐Wei4,Chen Zhao‐Hui3ORCID

Affiliation:

1. Frontiers Science Center for Deep Ocean Multispheres and Earth System Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education Ocean University of China Qingdao China

2. GEOMAR Helmholtz Center for Ocean Research Kiel Kiel Germany

3. Key Laboratory of Physical Oceanography Ministry of Education Ocean University of China Qingdao China

4. Eco‐Environmental Monitoring and Research Center Pearl River Valley and South China Sea Ecology and Environment Administration Ministry of Ecology and Environment Guangzhou China

Abstract

AbstractMarine isoprene plays a crucial role in the formation of secondary organic aerosol within the remote marine boundary layer. Due to scarce field measurements of oceanic isoprene and limited laboratory‐based studies of isoprene production, assessing the importance of marine isoprene on atmospheric chemistry and climate is challenging. Calculating in‐field isoprene production rates is a crucial step to predict marine isoprene concentrations and the subsequent emissions to the atmosphere. The distribution, sources, and dominant environmental factors of isoprene were determined in the Northwest Pacific Ocean in 2019. The nutrient enrichment in the Kuroshio Oyashio Extension (KOE) surface seawater, driven by the upwelling and atmospheric deposition, promoted the growth of phytoplankton and elevated the isoprene concentration. This was confirmed by observed responses of isoprene to nutrients and aerosol dust additions in a ship‐based incubation experiment, where the isoprene concentrations increased by 70% (t = 4.417, p < 0.001) and 35% (t = 2.387, p < 0.05), respectively. Biogenic isoprene production rates in the deck incubation experiments were positively related to chlorophyll a, temperature, and solar radiation, with an average production of 7.33 ± 4.27 pmol L−1 day−1. Photochemical degradation of dissolved organic matter was likely an abiotic source of isoprene, contributing to approximately 14% of the total production. Driven by high isoprene production and extreme physical disturbance, the KOE showed very high emissions of isoprene of 46.0 ± 13.0 nmol m−2 day−1, which led to a significant influence on the oxidative capacity of the local atmosphere.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3