Stream Nitrogen Concentrations Across Arctic Vegetation Gradients

Author:

Holmboe C. M. H.12ORCID,Pastor A.3,Riis T.12ORCID

Affiliation:

1. Department of Biology Aarhus University Aarhus C Denmark

2. Department of Biology Arctic Research Center Aarhus University Aarhus C Denmark

3. Group of Continental Aquatic Ecology Research (GRECO) Institute of Aquatic Ecology University of Girona Girona Spain

Abstract

AbstractThe Arctic is experiencing dramatic climate‐induced changes, which could have substantial consequences for nutrient export from land to streams and, thus, in‐stream nutrient availability and composition. Arctic freshwater ecosystems are low‐productive systems often limited by nitrogen (N) availability. Studying small streams is important due to their high abundance across the landscape, intimate connection to their catchments, high biogeochemical activity and high sensitivity to climate change. However, little information is available, especially in terms of N availability and composition (i.e., nitrate, ammonium, and dissolved organic nitrogen [DON]). We aimed to quantify N concentrations across small Arctic streams and explore the link between terrestrial vegetation and stream water N concentration. We conducted a literature study and extracted data from published articles, online databases, and unpublished field data. Out of 215 preselected articles, 20 met our criteria and contained 2,381 observations on stream water N concentrations in the Arctic. Data on DON was scarce: only 161 of the 2,381 observations contained DON data. We found that nitrate (NO3), ammonium (NH4+) and DON ranged undetectable to 1,155, 547 and 1,587 μg N L−1, respectively. We found that sparsely vegetated areas had higher stream water N‐concentrations, while barren areas and higher vegetated areas had lower stream water N‐concentrations. This study provides fundamental knowledge on N availability in small streams across the Arctic, highlights data gaps and contributes to the basic knowledge needed for understanding and predicting future changes in N dynamics.

Funder

Aarhus Universitets Forskningsfond

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3