Drivers of Air‐Sea CO2 Flux in the Subantarctic Zone Revealed by Time Series Observations

Author:

Yang Xiang12ORCID,Wynn‐Edwards Cathryn A.23ORCID,Strutton Peter G.14ORCID,Shadwick Elizabeth H.23ORCID

Affiliation:

1. Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS Australia

2. Australian Antarctic Program Partnership Hobart TAS Australia

3. CSIRO Hobart TAS Australia

4. Australian Centre for Excellence in Antarctic Science University of Tasmania Hobart TAS Australia

Abstract

AbstractThe subantarctic zone is an important region in the Southern Ocean with respect to its influence on air‐sea CO2 exchange and the global ocean carbon cycle. However, understanding of the magnitude and drivers of the flux are still being refined. Using observations from the Southern Ocean Time Series (SOTS) station (∼47°S, 142°E) and auxiliary data, we developed a multiple linear regression model to compute the sea surface partial pressure of CO2 (pCO2) over the past two decades. The mean amplitude of the pCO2 seasonal cycle between 2004 and 2021 was 44 μatm (range 30–54 μatm). Summer minima ranged from 310 to 370 μatm and winter maxima were near equilibrium with the atmosphere. The non‐thermal (i.e., biological processes and mixing) contribution to the seasonal variability in pCO2 was several times larger than the thermal contribution. The SOTS region acted as a net carbon sink at annual time scales, with mean magnitude of 6.0 mmol m−2 d−1. The positive phase of the Southern Annular Mode (SAM) increased ocean carbon uptake primarily through an increase in wind speed at zero time lag. Increased surface pCO2 was correlated with a positive SAM with a lag of 4 months, mainly due to reduced biological uptake and increased mixing. During the autotrophic season, pCO2 was predominantly impacted by primary productivity, whereas water mass movement, inferred by temperature and salinity anomalies, had a larger impact on the heterotrophic season. In general, mesoscale processes such as eddies and frontal movement impact the local biogeochemical features more than the SAM.

Funder

China Scholarship Council

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3