Benthic Foraminiferal Mn/Ca as Low‐Oxygen Proxy in Fjord Sediments

Author:

Brinkmann Inda12ORCID,Barras Christine3,Jilbert Tom4ORCID,Paul K. Mareike4ORCID,Somogyi Andrea5ORCID,Ni Sha16ORCID,Schweizer Magali3ORCID,Bernhard Joan M.7ORCID,Filipsson Helena L.1ORCID

Affiliation:

1. Department of Geology Lund University Lund Sweden

2. Now at Department of Glaciology and Climate Geological Survey of Denmark and Greenland Copenhagen Denmark

3. Laboratoire de Planétologie et Géosciences LPG UMR 6112 CNRS University of Angers Nantes University Le Mans University Angers France

4. Department of Geosciences and Geography University of Helsinki Helsinki Finland

5. Nanoscopium Synchrotron SOLEIL Saint‐Aubin Gif‐sur‐Yvette Cedex France

6. Now at Institute for Geology University of Hamburg Hamburg Germany

7. Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA

Abstract

AbstractFjord systems are typically affected by low‐oxygen conditions, which are increasing in extent and severity, forced by ongoing global changes. Fjord sedimentary records can provide high temporal resolution archives to aid our understanding of the underlying mechanisms and impacts of current deoxygenation. However, such archives can only be interpreted with well‐calibrated proxies. Bottom‐water oxygen conditions determine redox regime and availability of redox‐sensitive trace elements such as manganese, which in turn may be recorded by manganese‐to‐calcium ratios (Mn/Ca) in biogenic calcium carbonates (e.g., benthic foraminifera tests). However, biological influences on Mn incorporation (e.g., species‐specific Mn fractionation, ontogeny, living and calcification depths) are still poorly constrained. We analyzed Mn/Ca of living benthic foraminifera (Bulimina marginata, Nonionellina labradorica), sampled at low‐ to well‐oxygenated conditions over a seasonal gradient in Gullmar Fjord, Swedish West coast (71–217 μmol/L oxygen (O2)), by laser‐ablation ICP‐MS. High pore‐water Mn availability in the fjord supported Mn incorporation by foraminifera. B. marginata recorded contrasting Mn redox regimes sensitively and demonstrated potential as proxy for low‐oxygen conditions. Synchrotron‐based scanning X‐ray fluorescence nanoimaging of Mn distributions across B. marginata tests displayed Mn/Ca shifts by chambers, reflecting bottom‐water oxygenation history and/or ontogeny‐driven life strategy preferences. In contrast, Mn/Ca signals of N. labradorica were extremely high and insensitive to environmental variability. We explore potential biologically controlled mechanisms that could potentially explain this species‐specific response. Our data suggest that with the selection of sensitive candidate species, the Mn/Ca proxy has potential to be further developed for quantitative oxygen reconstructions in the low‐oxygen range.

Funder

Crafoordska Stiftelsen

Academy of Finland

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3