Toward a Better Understanding of the Global Ocean Copper Distribution and Speciation Through a Data‐Constrained Model

Author:

Liang Hengdi1ORCID,Moffett James W.2ORCID,John Seth G.1ORCID

Affiliation:

1. Department of Earth Sciences University of Southern California Los Angeles CA USA

2. Department of Biological Sciences University of Southern California Los Angeles CA USA

Abstract

AbstractCopper (Cu) is an important micronutrient for marine organisms, which can also be toxic at elevated concentrations. Here, we present a new model of global ocean Cu biogeochemical cycling, constrained by GEOTRACES observations, with key processes including sources from rivers, dust, and sediments, biological uptake and remineralization of Cu, reversible scavenging of Cu onto sinking particles, conversion of Cu between labile and inert species, and ocean circulation. In order for the model to match observations, in particular the relatively small increase in Cu concentrations along the global “conveyor belt,” we find it is necessary to include significant external sources of Cu with a magnitude of roughly 1.3 Gmol yr−1, having a relatively stronger impact on the Atlantic Ocean, though the relative contributions of river, dust, and sediment sources are poorly constrained. The observed nearly linear increase in Cu concentrations with depth requires a strong benthic source of Cu, which includes the sedimentary release of Cu that was reversibly scavenged from the water column. The processes controlling Cu cycling in the Arctic Ocean appear to be unique, requiring both relatively high Cu concentrations in Arctic rivers and reduced scavenging in the Arctic. Observed partitioning of Cu between labile and inert phases is reproduced in the model by the slow conversion of labile Cu to inert in the whole water column with a half‐life of ∼250 years, and the photodegradation of inert Cu to labile in the surface ocean with a minimum half‐life of ∼2 years at the equator.

Funder

National Science Foundation

Simons Foundation

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3