Trace Element Geochemistry in North Pacific Red Clay Sediment Porewaters and Implications for Water‐Column Studies

Author:

Steiner Zvi1ORCID,Antler Gilad23,Berelson William M.4,Crockford Peter W.56ORCID,Dunlea Ann G.5ORCID,Hou Yi7ORCID,Adkins Jess F.8,Turchyn Alexandra V.9ORCID,Achterberg Eric P.1ORCID

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany

2. Department of Earth and Environmental Sciences Ben‐Gurion University Beer Sheva Israel

3. The Interuniversity Institute for Marine Sciences Eilat Israel

4. University of Southern California Los Angeles CA USA

5. Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution Woods Hole MA USA

6. Department of Earth Sciences Carleton University Ottawa ON Canada

7. Department of Earth, Environmental, and Planetary Sciences Rice University Houston TX USA

8. Department of Geology and Planetary Sciences California Institute of Technology Pasadena CA USA

9. Department of Earth Sciences University of Cambridge Cambridge UK

Abstract

AbstractGeochemical analyses of trace elements in the ocean water column have suggested that pelagic clay‐rich sediments are a major source of various elements to bottom‐waters. However, corresponding high‐quality measurements of trace element concentrations in porewaters of pelagic clay‐rich sediments are scarce, making it difficult to evaluate the contributions from benthic processes to global oceanic cycles of trace elements. To bridge this gap, we analyzed porewater and bulk sediment concentrations of vanadium, chromium, cobalt, nickel, copper, arsenic, molybdenum, barium and uranium, as well as concentrations of the major oxidants nitrate, manganese, iron, and sulfate in the top 30 cm of cores collected along a transect from Hawaii to Alaska. The data show large increases in porewater concentrations of vanadium, manganese, cobalt, nickel, copper, and arsenic within the top cm of the sediment, consistent with the release of these elements from remineralized organic matter. The sediments are a sink for sulfate, uranium, and molybdenum, even though conditions within the sampled top 30 cm remain aerobic. Porewater chromium concentrations generally increase with depth due to release from sediment particles. Extrapolated to the global aerial extent of pelagic clay sediment, the benthic fluxes in mol yr−1 are Ba 3.9 ± 3.6 × 109, Mn 3.4 ± 3.5 × 108, Co 2.6 ± 1.3 × 107, Ni 9.6 ± 8.6 × 108, Cu 4.6 ± 2.4 × 109, Cr 1.7 ± 1.1 × 108, As 6.1 ± 7.0 × 108, V 6.0 ± 2.5 × 109. With the exception of vanadium, calculated fluxes across the sediment–water interface are consistent with the variability in bottom‐water concentrations and ocean residence time of the studied elements.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3