Composite Model for Predicting SYM‐H Index

Author:

Ji Yong1ORCID,Ma Lan1,Shen Chao1ORCID,Zeng Gang2ORCID,Yang YanYan3,Ti Shuo4

Affiliation:

1. College of Science Harbin Institute of Technology (Shenzhen) Shenzhen China

2. School of Mathematics and Physics Jingchu University of Technology Jingmen China

3. National Institute of Natural Hazards Ministry of Emergency Management of China Beijing China

4. State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing China

Abstract

AbstractPredicting SYM‐H index is significant in space weather because it quantifies the degree of perturbation of the geomagnetic field during storm. This study presents a composite model to predict SYM‐H index based on solar wind parameters by combining the empirical magnetospheric dynamical equation with neural networks. The formula for predicted SYM‐H originates from the well‐known empirical relationship between interplanetary conditions and the Dst index. In particular, the coefficients in the empirical relationship are determined by using neural networks that excel at approaching the function linking the coefficients and the solar wind parameters. The 1‐ and 2‐hr forecasts of SYM‐H during storm time are reliable, and the precision of some cases is even better than the latest models solely using deep neural networks. Based on the composite model, the dependence of loss time and injection rates of ring current energy on the solar wind parameters and SYM‐H are investigated.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3