Development of the Miniature Robotic Electrodialysis (MR ED) System for Small‐Scale Desalting of Liquid Samples With Recovery of Organics

Author:

Bryson F. E.1ORCID,Ingall E. D.1ORCID,Hanna A. M.1,Cardelino M.1,Plattner T.1,Meister M. R.12,Lawrence J. D.1ORCID,Mullen A. D.1ORCID,Dichek D.1,Schmidt B. E.12ORCID

Affiliation:

1. Georgia Institute of Technology Atlanta GA USA

2. Cornell University Ithaca NY USA

Abstract

AbstractWhile liquid environments with high salt content are of broad interest to the Earth and Planetary Science communities, instruments face challenges in detecting organics in hypersaline samples due to the effects of salts. Therefore, technology to desalt samples before analysis by these instruments would be enabling for liquid sampling on missions to Mars or ocean worlds. Electrodialysis (ED) removes salt from aqueous solutions by applying an electric potential across a series of ion‐selective membranes, and is demonstrated to retain a significant percentage of dissolved organic molecules (DOM) in marine samples. However, current electrodialysis systems used for DOM recovery are too large for deployment on missions or for use in terrestrial fieldwork. Here, we present the design and evaluation of the Miniature Robotic Electrodialysis (MR ED) system, which is approximately 1/20th the size of heritage instruments and processes as little as 50 mL of sample at a time. We present tests of the instrument efficiency and DOM recovery using lab‐created solutions as well as natural samples taken from an estuary of the Skidaway River (Savannah, GA) (Verity, 2002) and from South Bay Saltworks (San Diego, CA) (Roseman & Watry, 2008; Survey, 2011). Our results show that the MR ED system removed 97%–99% of the salts in most samples, with an average DOC recovery range from 53% to 77%, achieving similar capability to tabletop instruments. This work both demonstrates MR ED as a possible field instrument and increases the technology readiness level of miniaturized electrodialysis systems for future missions.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3