Affiliation:
1. Centre for Climate Research Singapore Meteorological Service Singapore Singapore Singapore
2. School of Earth and Environment University of Leeds Leeds UK
3. Department of Applied Sciences University of Petroleum and Energy Studies Dehradun India
4. Swiss School of Business and Research Zurich Switzerland
5. City and Guilds of London Institute London UK
Abstract
AbstractRise in mean temperature put a great deal of uncertainty about how weather and climate extremes may play out, particularly in India's varied climatic zones. Consequently, it is important to understand the possible changes in both magnitude and direction of weather and climate extremes like rainfall for different warming levels of 1.5 and 2°C scenarios concerning preindustrial and present levels. Hence in the present study, the precipitation behavior of seven North Indian states that is, Haryana, Himachal Pradesh, J&K, Punjab, Rajasthan, Uttar Pradesh, and Uttarakhand carefully studied using CMIP5 models. Future projections of precipitation has been done for the Paris Agreement global warming level of 1.5 and 2°C scenarios. Along with model validation and future projections of precipitation, the return period of extreme rainfall is also discussed to understand the behavior of the occurrence of extreme precipitation. Statistical analysis shows that the ensemble means have the least error as compared to the other six CMIP5 models. Therefore, future analysis has been done with the ensemble mean. Our findings show that the precipitation is likely to decrease in the 1.5°C scenarios, while it is likely to increase in the 2°C scenarios. The occurrence and intensity of extreme rainfall events are likely to be more frequent in all the models. The return period of the extreme rainfall events is likely to increase in all the states in both the warming scenarios. A three‐fold rise is likely to increase extreme rainfall events in the 2°C scenario.
Funder
Natural Environment Research Council
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献