Global Distribution and Morphology of Small Seamounts

Author:

Gevorgian Julie1ORCID,Sandwell David T.1ORCID,Yu Yao1ORCID,Kim Seung‐Sep2ORCID,Wessel Paul3ORCID

Affiliation:

1. Scripps Institution of Oceanography University of California San Diego La Jolla CA USA

2. Department of Geological Sciences Chungnam National University Daejeon Korea

3. Department of Earth Sciences SOEST University of Hawaii at Manoa Honolulu HI USA

Abstract

AbstractSeamounts are isolated elevations in the seafloor with circular or elliptical plans, comparatively steep slopes, and relatively small summit area (Menard, 1964). The vertical gravity gradient (VGG), which is the curvature of the ocean surface topography derived from satellite altimeter measurements, has been used to map the global distribution of seamounts (Kim & Wessel, 2011, https://doi.org/10.1111/j.1365-246x.2011.05076.x). We used the latest grid of VGG to update and refine the global seamount catalog; we identified 19,325 new seamounts, expanding a previously published catalog having 24,643 seamounts. Seven hundred thirty‐nine well‐surveyed seamounts, having heights ranging from 421 to 2,500 m, were used to estimate the typical radially symmetric seamount morphology. First, an Empirical Orthogonal Function (EOF) analysis was used to demonstrate that these small seamounts have a basal radius that is linearly related to their height—their shapes are scale invariant. Two methods were then used to compute this characteristic base to height ratio: an average Gaussian fit to the stack of all profiles and an individual Gaussian fit for each seamount in the sample. The first method combined the radial normalized height data from all 739 seamounts to form median and median‐absolute deviation. These data were fit by a 2‐parameter Gaussian model that explained 99.82% of the variance. The second method used the Gaussian function to individually model each seamount in the sample and further establish the Gaussian model. Using this characteristic Gaussian shape we show that VGG can be used to estimate the height of small seamounts to an accuracy of ∼270 m.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3