Affiliation:
1. Department of Earth System Sciences Yonsei University Seoul South Korea
Abstract
AbstractMajor earthquakes in continental regions may cause significant damage. Preexisting fault system across megacity receives high attention for possible seismic damages. Earthquake occurrence mechanism is important to assess the geohazard potentials. Continental‐scale Quaternary fault system is developed across the Seoul metropolitan area where the population is the largest in the Korean Peninsula. Historical seismic‐damage records suggest potential seismic hazards in the Seoul metropolitan area. We investigate the fault motions and spatial distribution of earthquakes in the Seoul metropolitan area using a matched‐filter technique that is based on stacked waveform crosscorrelation functions among densely‐deployed seismic stations. The analysis detects 1103 earthquakes that include 360 events with magnitudes (ML) of −0.6 to 2.0 around the Chugaryeong fault and 34 events with magnitudes of −0.5 to 2.7 around Wangsukcheon, Pocheon, and Yeseonggang faults. The seismicity suggests a set of near‐vertical subparallel (or orthogonal) faults that develop from the major faults. A major fault system behaves as a backbone structure that makes branch faults develop, producing seismicity including major earthquakes. The backbone structure may control the fault development that conforms to the ambient stress field. The backbone faults may play a role to increase geohazard potentials.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献