Remote Sensing Small Explosives With an Ionospheric Radar

Author:

Obenberger K. S.1ORCID,Dugick F. K. Dannemann2ORCID,Bowman D. C.2ORCID

Affiliation:

1. Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base NM USA

2. Sandia National Laboratories Albuquerque NM USA

Abstract

AbstractEarth's ionosphere has long been targeted as a medium for remote sensing of explosive terrestrial events such as earthquakes, volcanic eruptions, and nuclear/conventional weapon detonations. Until now, the only confirmed ionospheric detections have been of very large events that were easily detectable through other traditional global sensor systems (e.g., seismic). We present the first clear, confirmed detections of relatively low yield 1‐ton TNT‐equivalent chemical explosions using pulsed Doppler radar observations of isodensity layers in the ionospheric E region. The shape and spectra of the detected waveforms closely match predictions from the acoustic ray tracing and weakly nonlinear waveform propagation models. The explosions were roughly three orders of magnitude lower yield than any previous confirmed ionospheric detection and represent the first conclusive evidence that explosions of this size can have clear impacts on the ionosphere. This technique could improve the remote detection of both anthropogenic and natural explosive events.

Funder

Air Force Office of Scientific Research

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3