Affiliation:
1. College of Geological Engineering and Geomatics Chang'an University Xi'an China
2. Big Data Center for Geosciences and Satellites Chang'an University Xi'an China
3. Key Laboratory of Western China's Mineral Resources and Geological Engineering Ministry of Education Xi'an China
4. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards School of Earth Sciences and Engineering Sun Yat‐sen University Guangzhou China
5. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China
Abstract
AbstractThe Mw 6.3 Yutian earthquake, occurred in northwestern Tibet on 25 June 2020, is one of the major events sequentially occurring in the region following the 2008 Mw 7.2, 2012 Mw 6.2, and 2014 Mw 6.9 earthquakes, and is of great significance for studying the tectonic activity and assessing future seismic hazards in the region. In this study, we used Sentinel‐1 Synthetic Aperture Radar images to retrieve co‐ and post‐seismic deformation and to investigate the coseismic rupture behavior of the fault and the mechanisms of postseismic deformation. Based on the slip models of recent four nearby major earthquakes, we explored the local stress evolution, triggering mechanism of the 2020 event and future regional seismic hazards. Postseismic modeling reveals that afterslip on fault patches surrounding the ruptured co‐seismic patches is the main mechanism responsible for the near‐field deformation, with the poroelastic rebound relaxation only accounts for maximumly 25% of the ground displacement and limited impact on the overall deformation pattern. The Coulomb failure stress changes (ΔCFS) suggest that the 2020 Yutian earthquake was inhibited by the 2008 Mw 7.2 earthquake but facilitated by the 2012 Mw 6.2 and 2014 Mw 6.9 earthquakes, resulting in an overall ΔCFS with a large lateral gradient on the 2020 fault. Stress concentrations on nearby major faults indicate increasing chances of seismic hazards in the eastern section of the Altyn Tagh fault at 82.8°E, the western section of the Guozha Co fault at 81.5°E and the entire section of the Ashikule fault.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献