Diagenetic Geochemistry of Iron, Sulfur, and Molybdenum in Sediments of the Middle Okinawa Trough Impacted by Hydrothermal Plumes and/or Cold Seeps

Author:

Qin Shuang‐Shuang123,Zhu Mao‐Xu1ORCID,Sun Zhilei23,Li Tie1,Zhang Xilin23,Geng Wei23,Cao Hong23,Xu Cuiling23,Zhai Bin23,Chen Ye23

Affiliation:

1. Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education College of Chemistry and Chemical Engineering Ocean University of China Qingdao China

2. The Key Laboratory of Gas Hydrate (Ministry of Natural Resources) Qingdao Institute of Marine Geology Qingdao China

3. Laboratory for Marine Geology Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China

Abstract

AbstractIron (Fe), sulfur (S), and molybdenum (Mo) geochemistry in marine sediments impacted by hydrothermal plumes and/or cold seeps is complex and has not been systematically documented. Here we characterize Fe, S, and Mo diagenesis in sediments between the Minami‐Ensei Knoll hydrothermal field and a cold‐seep site of the middle Okinawa Trough. Results show that distances away from the hydrothermal field and the steep trough slope may significantly affect the transport of hydrothermal Fe. The transformation of hydrothermal reactive Fe to poorly reactive or unreactive Fe‐bearing phyllosilicates decreased the relative fractions of highly reactive Fe (FeHR) in total Fe (FeHR/FeT). Despite this, the standing stocks of Fe oxides in the methane‐free sediments have not been dampened, indicating no net impacts of hydrothermal Fe inputs on the size of Fe oxides. In the methane‐free sediments, low ratios of total reduced inorganic sulfide (TRIS) to total organic carbon (TOC) (TRIS/TOC), highly 34S‐depleted pyrite, and low Mo contents suggest that organoclastic sulfate reduction is at low rates and plays a limited role in carbon cycle. In the cold‐seep sediments, however, intense sulfate reduction coupled to anaerobic methane oxidation significantly elevate TRIS/TOC ratios, Mo enrichment, and isotope compositions of Mo and pyrite‐S. This pathway is expected to be important in carbon cycle in the basin due to the wide occurrence of cold seeps. Our results highlight the important controls of the local extreme depositional/diagenetic conditions on sedimentary S and Mo records, with implications for the reconstruction of paleoredox states of the past earth's surface.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3