Affiliation:
1. College of Marine Science University of South Florida Tampa FL USA
2. Department of Oceanography Texas A&M University College Station TX USA
3. Department of Earth Sciences University of Southern California Los Angeles CA USA
4. Skidaway Institute of Oceanography University of Georgia Savannah GA USA
5. Department of Earth, Ocean and Atmospheric Science Florida State University Tallahassee FL USA
Abstract
AbstractDespite the Pacific being the location of the earliest seawater Cd studies, the processes which control Cd distributions in this region remain incompletely understood, largely due to the sparsity of data. Here, we present dissolved Cd and δ114Cd data from the US GEOTRACES GP15 meridional transect along 152°W from the Alaskan margin to the equatorial Pacific. Our examination of this region's surface ocean Cd isotope systematics is consistent with previous observations, showing a stark disparity between northern Cd‐rich high‐nutrient low‐chlorophyll waters and Cd‐depleted waters of the subtropical and equatorial Pacific. Away from the margin, an open system model ably describes data in Cd‐depleted surface waters, but atmospheric inputs of isotopically light Cd likely play an important role in setting surface Cd isotope ratios (δ114Cd) at the lowest Cd concentrations. Below the surface, Southern Ocean processes and water mass mixing are the dominant control on Pacific Cd and δ114Cd distributions. Cd‐depleted Antarctic Intermediate Water has a far‐reaching effect on North Pacific intermediate waters as far as 47°N, contrasting with northern‐sourced Cd signatures in North Pacific Intermediate Water. Finally, we show that the previously identified negative Cd* signal at depth in the North Pacific is associated with the PO4 maximum and is thus a consequence of an integrated regeneration signal of Cd and PO4 at a slightly lower Cd:P ratio than the deep ocean ratio (0.35 mmol mol−1), rather than being related to in situ removal processes in low‐oxygen waters.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献