Affiliation:
1. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Collaborative Innovation Center of Atmospheric Environment and Equipment Technology School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing China
2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou China
3. Department of Biology University of West Florida Pensacola FL USA
Abstract
AbstractAlthough elevated atmospheric nitrogen (N) deposition can increase terrestrial carbon (C) sinks, the persistence of this C acquisition depends partly on the responses of plant biomass and soil organic carbon (SOC) to long‐term exogenous N input. Experiments with N‐additions show increases in above‐ground biomass (AGB), although C dynamics between above‐ and below‐ground under N enrichment are unconnected in many studies. Here, we meta‐analyzed data from 362 N‐addition experiments globally and found that both AGB (+34%) and below‐ground biomass (BGB, +13%) positively but root‐to‐shoot ratios negatively (−15%) responded to N addition. These responses were reversed, however, when the experimental duration was over 20 years, wherein BGB increased and AGB was unchanged or even declined, during which time plants invested more C into roots. The effects of increased AGB were weak and negative, whereas those of increased BGB were robust and positive on SOC. Under chronic N deposition, the significant increase in SOC (5%) was associated with the increased root C inputs and decreased soil C losses rather than with increased above‐ground C inputs. The results suggest that the sequestration of below‐ground C exceeds that of above‐ground C to sustain terrestrial C gain during long‐term N deposition.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献