Decoupling of Barium and Silicon at the Congo River‐Dominated Southeast Atlantic Margin: Insights From Combined Barium and Silicon Isotopes

Author:

Zhang Zhouling1ORCID,Yu Yang1ORCID,Hathorne Ed C.1ORCID,Vieira Lucia H.1,Grasse Patricia12ORCID,Siebert Christopher1,Rahlf Peer1,Frank Martin1

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany

2. German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany

Abstract

AbstractThe correlation between concentrations of dissolved barium (dBa) and silicon (dSi) in the modern ocean supports the use of Ba as a paleoceanographic proxy. However, the mechanisms behind their linkage and the exact processes controlling oceanic Ba cycling remain enigmatic. To discern the extent to which this association arises from biogeochemical processes versus physical mixing, we examine the behavior of Ba and Si at the Congo River‐dominated Southeast Atlantic margin where active biological processes and large boundary inputs override the large‐scale ocean circulation. Here we present the first combined measurements of dissolved stable Ba (δ138Ba) and Si (δ30Si) isotopes as well as Ba and Si fluxes estimated based on 228Ra from the Congo River mouth to the northern Angola Basin. In the surface waters, river‐borne particle desorption or dissolution and shelf inputs lead to non‐conservative additions of both dBa and dSi to the Congo‐shelf‐zone, with the Ba flux increasing more strongly than that of Si across the shelf. In the epipelagic and mesopelagic layers, Ba and Si are decoupled likely due to different depths of in situ barite precipitation and biogenic silica production. In the deep waters of the northern Angola Basin, we observe large enrichment of dBa, likely originating from high benthic inputs from the Congo deep‐sea fan sediments. Our results reveal different mechanisms controlling the biogeochemical cycling of Ba and Si and highlight a strong margin influence on marine Ba cycling. Their close association across the global ocean must therefore mainly be a consequence of the large‐scale ocean circulation.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3