Direct and Indirect Drivers of Energy and Nutrient Availability in Freshwater Ecosystems Across Spatial Scales

Author:

Fazekas Hannah M.12ORCID,Brun Julien2,Wymore Adam S.12ORCID

Affiliation:

1. Department of Natural Resources and the Environment University of New Hampshire Durham NH USA

2. National Center for Ecological Analysis and Synthesis University of California, Santa Barbara Santa Barbara CA USA

Abstract

AbstractFreshwater ecosystems reflect the landscapes in which they are embedded. The biogeochemistry of these systems is fundamentally linked to climate and watershed processes that control fluxes of water and the mobilization of energy and nutrients imprinting as variation in stream water chemistry. Disentangling these processes is difficult as they operate at multiple scales varying across space. We examined the relative importance of climate, soil, and watershed characteristics in mediating direct and indirect pathways that influence carbon and nitrogen availability in streams and rivers across spatial scales. Our data set comprised landscape and climatic variables and 37,995 chemistry measurements of carbon and nitrogen across 459 streams and rivers spanning the continental United States. Models explained a small fraction of carbon and nitrogen concentrations at the continental scale (25% and 6%, respectively) but 61% and 40%, respectively, at smaller spatial scales. Hydrometeorological processes were always important in mediating the availability of solutes but the mechanistic implications were variable across spatial scales. The influence of hydrometeorology on concentrations was often not direct, rather it was mediated by soil characteristics for carbon and watershed characteristics for nitrogen. For example, the seasonality of precipitation was often important in determining carbon concentrations through its influence on soil moisture at biogeoclimatic spatial scales, whereas it had a direct influence on concentrations at the continental scale. Our results suggest that hydrometeorological forcing remains the consistent driver of energy and nutrient concentrations but the mechanism influencing patterns varies across broad spatial scales.

Funder

National Institute of Food and Agriculture

U.S. Department of Agriculture

National Center for Ecological Analysis and Synthesis

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3